Модели сложных систем. Принципы и подходы к построению математических моделей - Book-Science - Научная энциклопедия
Профиль
Рейтинги
Новые
Категории
  • Новости
  • Статьи
  • Работы
  • Исследования
  • Заметки
  • Комменты

Модели сложных систем. Принципы и подходы к построению математических моделей

Разместил: Admin, 5 April 2011

Принципы определяют те общие требования, которым должна удовлетворять правильно построенная модель. При рассмотрении порознь каждый из них может показаться довольно очевидным. Но совокупность взятых вместе принципов и подходов далеко не тривиальна. Многие ошибки и неудачи в практике моделирования являются прямым следствием нарушения этой методологии. Рассмотрим эти принципы.1. Адекватность. Этот принцип предусматривает соответствие модели целям исследования по уровню сложности и организации, а также соответствие реальной системе относительно выбранного множества свойств. До тех пор, пока не решен вопрос, правильно ли отображает модель исследуемую систему, ценность модели незначительна.Соответствие модели решаемой задаче. Модель должна строиться для решения определенного класса задач или конкретной задачи исследования системы. Попытки создания универсальной модели, нацеленной на решение большого числа разнообразных задач, приводят к такому усложнению, что она оказывается практически непригодной. Опыт показывает, что при решении каждой конкретной задачи нужно иметь свою модель, отражающую те аспекты системы, которые являются наиболее важными в данной задаче. Этот принцип связан с принципом адекватности.Упрощение при сохранении существенных свойств системы. Модель должна быть в некоторых отношениях проще прототипа - в этом смысл моделирования. Чем сложнее рассматриваемая система, тем по возможности более упрощенным должно быть ее описание, умышленно утрирующее типичные и игнорирующее менее существенные свойства. Этот принцип может быть назван принципом абстрагирования от второстепенных деталей.Соответствие между требуемой точностью результатов моделирования и сложностью модели. Модели по своей природе всегда носят приближенный характер. Возникает вопрос, каким должно быть это приближение. С одной стороны, чтобы отразить все сколько-нибудь существенные свойства, модель необходимо детализировать. С другой стороны, строить модель, приближающуюся по сложности к реальной системе, очевидно, не имеет смысла. Она не должна быть настолько сложной, чтобы нахождение решения оказалось слишком затруднительным. Компромисс между этими двумя требованиями достигается нередко путем проб и ошибок. Практическими рекомендациями по уменьшению сложности моделей являются:изменение числа переменных, достигаемое либо исключением несущественных переменных, либо их объединением. Процесс преобразования модели в модель с меньшим числом переменных и ограничений называют агрегированием.изменение природы переменных параметров. Переменные параметры рассматриваются в качестве постоянных, дискретные - в качестве непрерывных и т.д.изменение функциональной зависимости между переменными. Нелинейная зависимость заменяется обычно линейной, дискретная функция распределения вероятностей - непрерывной;изменение ограничений (добавление, исключение или модификация). При снятии ограничений получается оптимистичное решение, при введении - пессимистичное. Варьируя ограничениями, можно найти возможные граничные значения эффективности. Такой прием часто используется для нахождения предварительных оценок эффективности решений на этапе постановки задач;ограничение точности модели. Точность результатов модели не может быть выше точности исходных данных.
Баланс погрешностей различных видов. В соответствии с принципом баланса необходимо добиваться, например, баланса систематической погрешности моделирования за счет отклонения модели от оригинала и погрешности исходных данных, точности отдельных элементов модели, систематической погрешности моделирования и случайной погрешности при интерпретации и осреднении результатов.Многовариантность реализаций элементов модели. Разнообразие реализаций одного и того же элемента, отличающихся по точности (а следовательно, и по сложности), обеспечивает регулирование соотношения «точность/сложность».Блочное строение. При соблюдении принципа блочного строения облегчается разработка сложных моделей и появляется возможность использования накопленного опыта и готовых блоков с минимальными связями между ними. Выделение блоков производится с учетом разделения модели по этапам и режимам функционирования системы.В зависимости от конкретной ситуации возможны следующие подходы к построению моделей:непосредственный анализ функционирования системы;проведение ограниченного эксперимента на самой системе;использование аналога;анализ исходных данных.Имеется целый ряд систем, которые допускают проведение непосредственных исследований по выявлению существенных параметров и отношений между ними. Затем либо применяются известные математические модели, либо они модифицируются, либо предлагается новая модель.При проведении эксперимента выявляются значительная часть существенных параметров и их влияние на эффективность системы.Если метод построения модели системы не ясен, но ее структура очевидна, то можно воспользоваться сходством с более простой системой, модель для которой существует.К построению модели можно приступить на основе анализа исходных данных, которые уже известны или могут быть получены. Анализ позволяет сформулировать гипотезу о структуре системы, которая затем апробируется.Разработчики моделей находятся под действием двух взаимно противоречивых тенденций: стремления к полноте описания и стремления к получению требуемых результатов возможно более простыми средствами. Достижение компромисса ведется обычно по пути построения серии моделей, начинающихся с предельно простых и восходящих до высокой сложности (существует известное правило: начинай с простых моделей, а далее усложняй). Простые модели помогают глубже понять исследуемую проблему. Усложненные модели используются для анализа влияния различных факторов на результаты моделирования. Такой анализ позволяет исключать некоторые факторы из рассмотрения.Сложные системы требуют разработки целой иерархии моделей, различающихся уровнем отображаемых операций. Выделяют такие уровни, как вся система, подсистемы, управляющие объекты и др.

: 3.1/5 (1440 )

Похожие статьи
1: 
Плюсы и минусы эпидуральной анестезии
В настоящее время эпидуральная анестезия чаще всего применяется для благополучного разрешения родового процесса или при хирургическом вмешательстве на нижнем поясе туловища. Эпидуральная анестезия осуществляется при помощи введения обезболивающего пр...
2: 
Уравнение
Уравнение - это равенство двух и более функций, каждая из которых состоит из набора переменных или переменных и констант. Уравнение, где известны значения переменных, при которых обеспечивается равенство, называется решенным уравнением. Переменные, и...
3: 
Программа дисциплины Базы данных
Цель дисциплины изучение фундаментальных концепций и принципов построения реляционных баз данных и освоение базовых технологических приемов разработки локальных и многопользовательских приложений в современных СУБД. Основные задачи: ознакомление студ...
4: 
Внутренняя норма доходности инвестиции IRR
Под IRR понимается значение коэффициента дисконтирования R, при котором NPV=0 (IRR=R при NPV=0). IRR показывает ожидаемую доходность проекта = максимально допустимый уровень расходов, который может быть ассоциирован с данным проектом. Показатель, кот...
5: 
Delphi. Обработка исключительных ситуаций
Исключительная или особая ситуация представляет собой сигнал о произошедшей в приложении ошибке. В Delphi исключительная ситуация является объектом, содержащим информацию, идентифицирующую ошибки и место их возникновения. Исключительная ситуация гене...
Пользователей онлайн: 15
Все права защищены. При копировании материалов ссылка на Book-Science обязательна. (c) Book-Science, 2010-2016